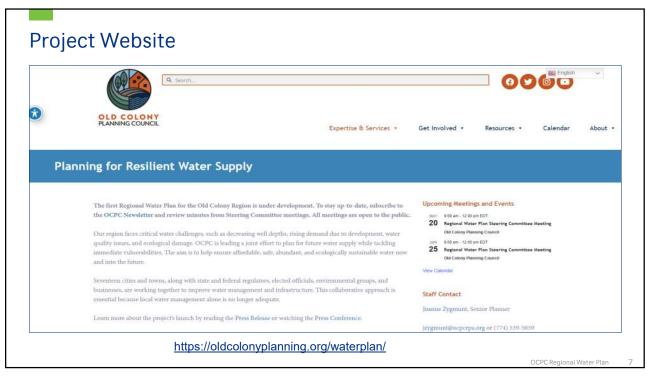
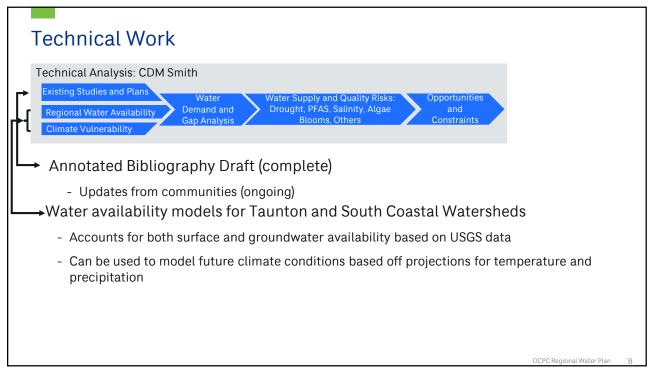
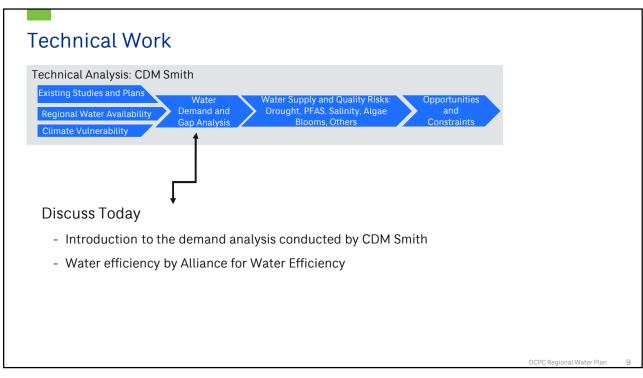


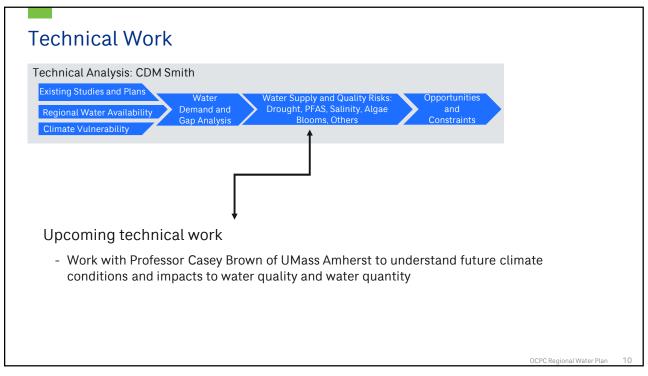
4



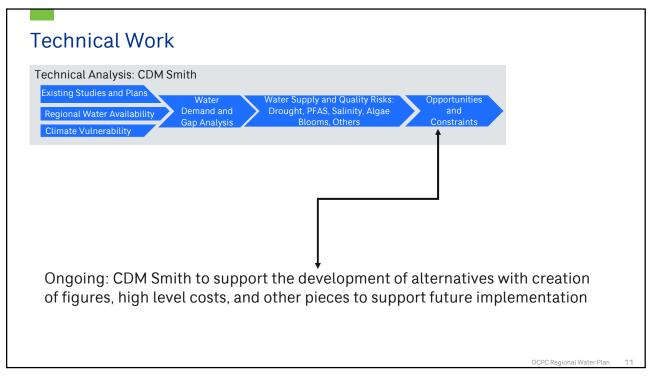


6

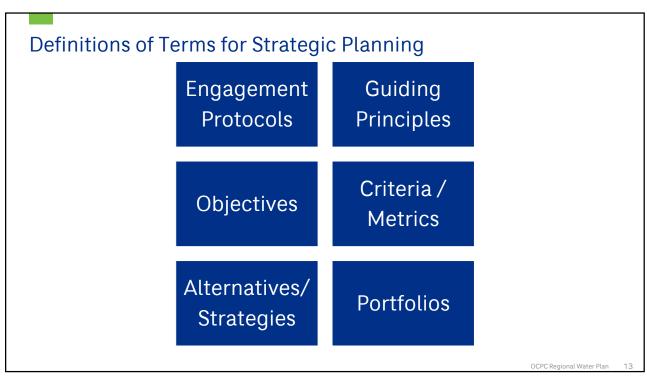




8



10



12

Terms used in our Guiding Principles

- Recommend sustainable water supply strategies that balance social, environmental, and economic needs for the region.
- Align with values of good stewardship and wise use of water.
- Reflect the limits of our natural resources and current/anticipated regulations.
- Incorporate uncertainties so implementation of recommendations can adapt over time.
- Strive for **environmental justice** and equity and social justice within and among the communities.
- Produce a list of "early-win" projects that can be aligned with available outside funding.

14

Terms used in our Objectives

- Meet all current and future peak water demands with climate resilient supply side and demand side strategies.
- Meet safe drinking water quality regulations, current and future.
- Improve ecosystem health.
- Prioritize alternatives with high cost-benefit value.
- Promote environmental justice and equity between communities by incorporating affordability accessibility, and distribution of infrastructure impacts.
- Consider innovative and alternative solutions such as stormwater capture, wastewater reuse and water use efficiency.
- Encourage sustainable potential for housing, economic development and prosperity.

15

Definitions of Highlighted Terms

Highlighted Term	Definition	Source
Sustainability	In practice, sustainability refers to efforts to align economic development with environmental protection and human well-being. Sustainability is commonly characterized in terms of the interdependence among three broad dimensions—environment, economy, and society—while considering both present and future generations.	United States EPA
Equity	Equity is defined as being fair and impartial, and providing what each group needs so they can experience fair and equitable treatment.	Massachusetts Office of Diversity and Equal Opportunity
Environmental Justice	Based on the principle that all people have a right to be protected from environmental hazards and to live in and enjoy a clean and healthful environment regardless of race, color, national origin, income, or English language proficiency. Environmental justice is the equal protection and meaningful involvement of all people and communities with respect to the development, implementation, and enforcement of energy, climate change, and environmental laws, regulations, and policies and the equitable distribution of energy and environmental benefits and burdens.	Massachusetts Municipal Vulnerability Preparedness (MVP) Program

16

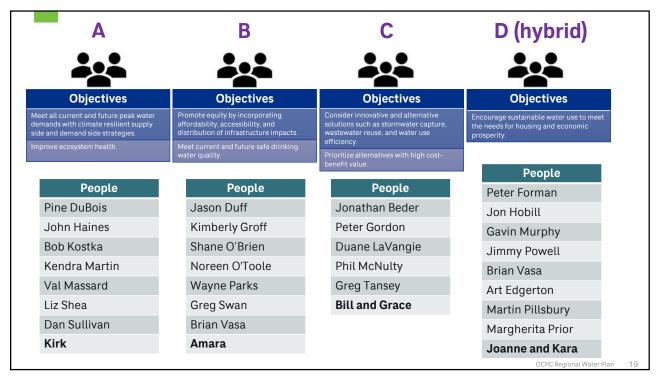
Definitions of Highlighted Terms

Highlighted Term	Definition	Source
Climate Resilience	The ability of a community to address the needs of its built, social, and natural environment in order to anticipate, cope with, and rebound stronger from events and trends related to climate change hazards, including temperature changes, extreme weather, sea level rise, coastal and inland flooding, changes in precipitation, and other impacts.	Massachusetts MVP Program

OCPC Regional Water Plan

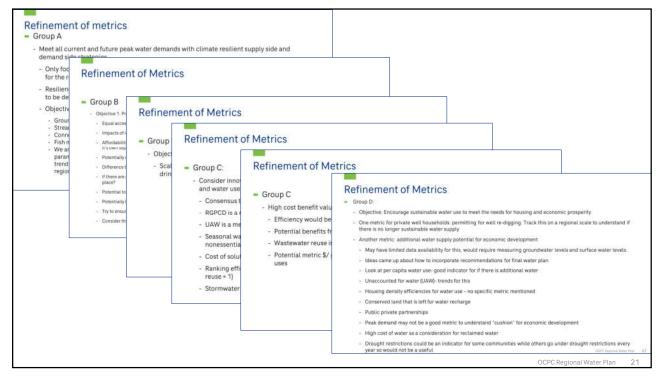
. -

17



Metrics Finalization Discussion

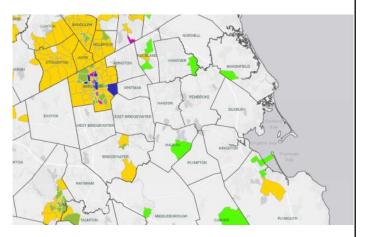
18


Metrics Finalization

- CDM Smith used input from the April steering committee meeting to develop meaningful metrics for this region
- The steering committee will review the draft metrics today
- The steering committee can revisit these metrics prior to their application later in July/August as needed

OCPC Regional Water Plan

20


Objective	Metric	Units (or qualitative)		
Meet all current and future peak water	Amount of regional supply gap filled (seasonal peak)	% of gap		
demands with climate resilient supply side and demand side strategies	Supply volume beyond local needs	% of gap		
	Connectivity of natural waters	Qualitative	•	
Improve ecosystem health	Quantity and/or quality of natural waters	Qualitative	•	
High Benefit: Cost value	Volume of supply gap reduced per unit cost	MG/\$M		
Consider innovative and alternative solutions such as stormwater capture,	Water supply- volume of supply that is considered innovative	MG]	
wastewater reuse and water use efficiency	Water efficiency- volume of demand decreased	MG	More inf	
Promote environmental justice and	Percent of MA designated EJ census tracts served by alternative	% of census tracts	following	
equity between communities	Percent of MA designated EJ census tracts not impacted by construction	% of census tracts		
Meet current and future drinking water quality standards	Total supply vulnerable to salinity/PFAS, etc.	% of total new supply		
Encourage sustainable water use to meet the needs for housing and economic prosperity	Flexibility in phasing and supply capacity	Qualitative	•	

22

Objective: Promote environmental justice and equity between communities

 Before we get into qualitative scales, lets look briefly at the state's data source that will be used for evaluating this metric

https://mass-

eoeea.maps.arcgis.com/apps/webappviewer/index.html?id=1d6f63e7762a48e5930de84ed4849212

23

Objective: Improve ecosystem health

Objective	Metric	Units (or qualitative)	Qualitative Scales				
	Wetric		1	2	3	4	5
	Connectivity of natural waters	Qualitative	Major detrimental impact to connectivity	Minor detrimental impact to connectivity	Neutral impact to connectivity	Minor positive impact to connectivity	Major positive impact to connectivity
Improve ecosystem health	Quantity and/or quality of natural waters	Qualitative	Major detrimental impact to quantity and/or quality	Minor detrimental impact to quantity and/or quality	Neutral impact to quantity and/or quality	Minor positive impact to quantity and/or quality	Major positive impact to quantity and/or quality

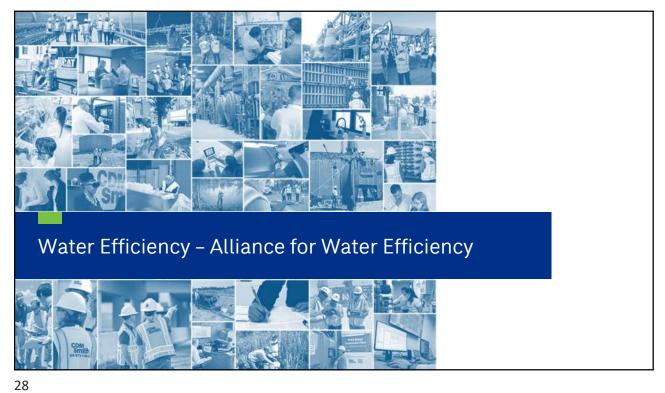
24

Objective: Encourage sustainable water use to meet the needs for housing and economic prosperity

		Units	Qualitative Scales			
Objective	Metric	(or qualitative)	1	3		
Encourage sustainable water use to meet the needs for housing and economic prosperity	Flexibility in phasing and supply capacity	Qualitative	Low flexibility in time or volume	High flexibility in time or volume	Fully able to meet anticipated future needs	

Future updates to metrics

- Opportunities to update metrics later in the process
- We will be conducting roundtable discussions with:
 - Private well users
 - Environmental groups
 - Chambers of commerce
 - Environmental justice communities
 - Cranberry growers



26

25

The Alliance for Water Efficiency is a stakeholderbased nonprofit organization dedicated to the efficient and sustainable use of water.

Collaboration: Network of colleagues across water providers, governments, business and industry, researchers, nonprofits and other partners.

Knowledge: Creating and sharing resources, tools, trainings, expertise and research.

Change: Advocacy for funding, policies, and partnerships that advance water efficiency.

Learn more: www.a4we.org

Alliance for Water Efficiency

29

About The Process

Process for developing preliminary recommendations:

- 1. Reviewed the annotated bibliography CDM prepared
- 2. Reviewed water data from OCPC communities
- 3. Reviewed state laws, plans, and standards
- 4. Reviewed water rates and structures from OCPC communities
- 5. Reviewed several OCPC regional plans
- 6. Compared regional efforts to other regions in the Eastern U.S. and beyond
- 7. Compared regional efforts to American Water Works Association G480-20 Standard for Water Conservation and Efficiency Program Operation and Management

My Background: 15 years experience working for utilities on law, policy, and planning. Major focus areas include developing supplies and implementing demand-side alternatives. Experience in the private, public, and nonprofit sectors. Certified utility water loss validator and trainer in Georgia, one of the two leading states for water loss. Education: JD from University of Notre Dame; BA from the University of Georgia.

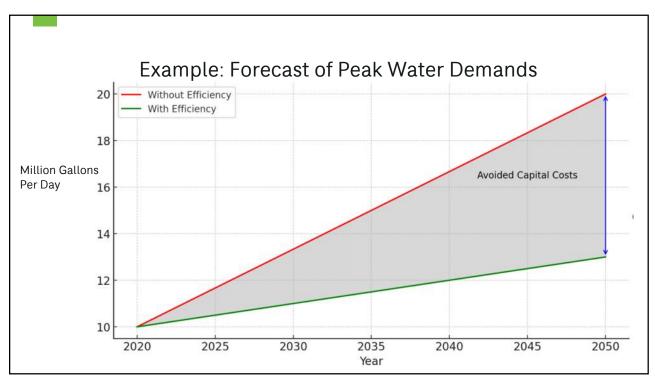
30

Let's Start with an Icebreaker

When I say water efficiency, what words come to mind?

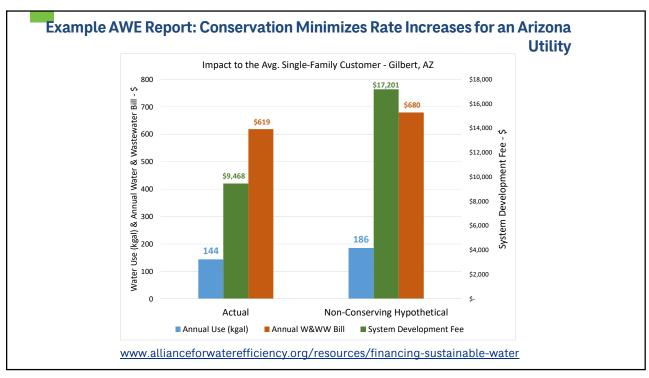
31

<u>Focus for Today</u> – Water efficiency recommendations for long-term demand reductions


Broader Analysis to Come - Written report that will also cover:

- 1. Advanced approaches to water efficiency
- 2. Drought planning and response
- 3. Efficiency and Affordability
- 4. Public Education
- 5. Passive Water Efficiency: State and Federal Codes and Standards

32



34

Preliminary recommendations for long-term demand reductions

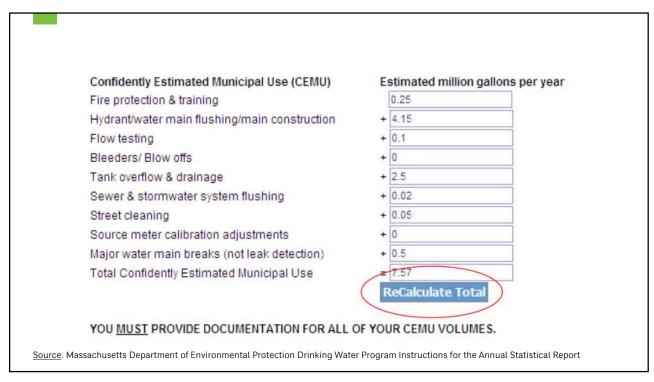
- 1. Conduct, Validate, and Act on Annual American Water Works Association (AWWA) Water Loss Audits
- 2. Adopt Advanced Metering Infrastructure and Monthly Billing
- 3. Implement Customer-Side Leak Detection Programs
- 4. Improve Increasing Block Rate Designs

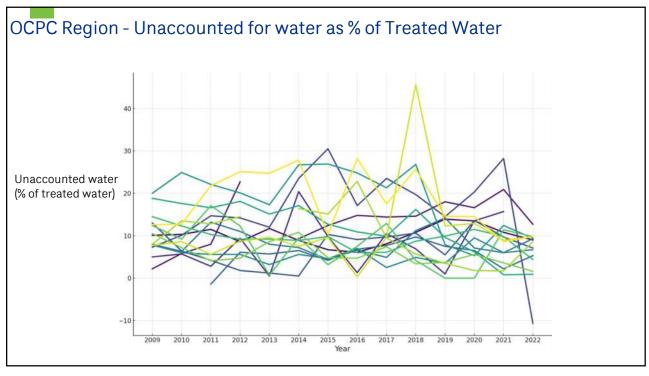
36

Preliminary Recommendation #1:

Conduct, Validate, and act on AWWA Water loss audits

37




Water Treated *minus*Metered Water Use *minus*Confidential Estimated Municipal Use =
Unaccounted For Water

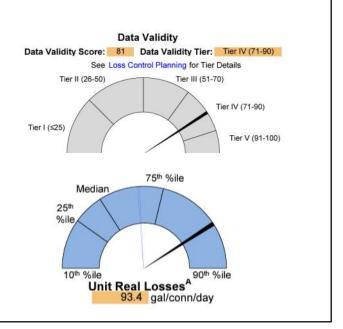
Unaccounted for water includes, among other things, physical leak in the water utility's distribution system; **reducing leaks is an alternative to increasing supplies**

38

40

Water Loss - Preliminary Recommendations

Each year water systems could:


- <u>Conduct</u> water loss audit using AWWA M36 manual and free water loss audit software
- <u>Validate</u> water loss audits using a third-party trained to conduct Level 1 validations pursuant to Water Research Foundation project #5057
- Act on the results by improving data grades and reducing real water losses

Potential demand reductions: Based on study of data from CA, GA, TN and TX, the median utility studied could cost effectively **reduce real water losses by more than 1/3rd; however, reductions vary based on utility-specific factors**

41

3 benefits of awwa methodology

- 1. Provides data validity grades
- 2. Generates actionable recommendations
- 3. Relies on metered data and validated industry ranges; limited use of estimates

42

Water Loss - Regional recommendation

OCPC or another regional entity could coordinate and assist with grant applications for multiple interested communities in the region and then host regional training.

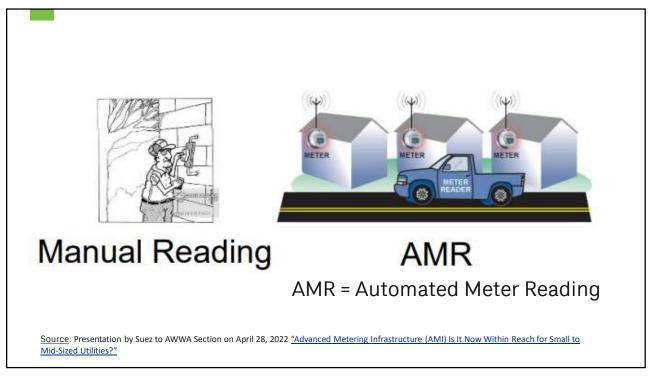
NOTICE: REQUEST FOR INTEREST

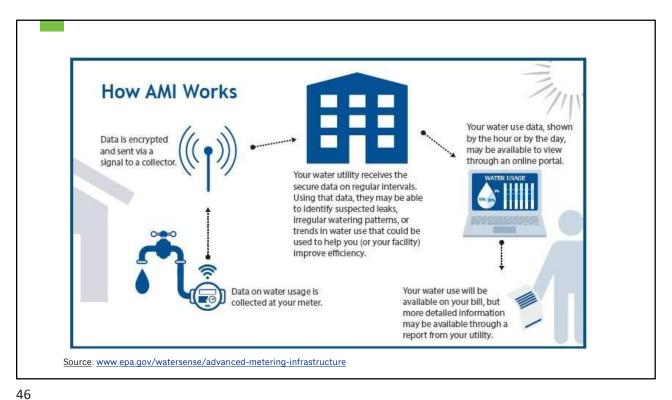
STATEWIDE WATER MANAGEMENT ACT PERMIT AND REGISTRATION HOLDERS

WATER AUDIT

RFI # BWR 2024-AWWA-M36-WATER AUDITS

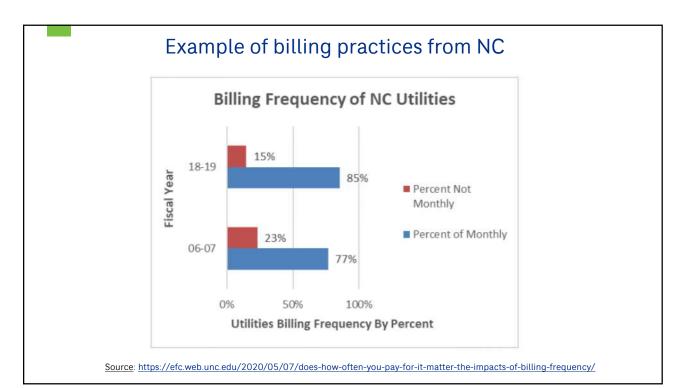
https://www.mass.gov/doc/m36-water-audit-opportunity-notice-fy2024/download


43


Preliminary Recommendation #2:

implement Advanced metering infrastructure (AMI) & monthly billing

44


Metering and billing - Status quo in OCPC Region

<u>Current meter types</u> – Predominantly manual reading and AMR (automated meter reading)

<u>Infrequent Billing</u> – Bimonthly, quarterly, semiannually + ~10 to 30+ days from time meter is read until bills are sent

<u>Impacts on Water Use</u> – customers may be unaware of customer-side leaks for a very long time; limits customer feedback on water usage; limits utility's ability to understand usage during peak months

47

48

Metering and billing - Preliminary recommendations

<u>Adopt AMI</u> – Adopt advanced metering infrastructure by creating a plan to install AMI meters and related infrastructure for most customer meters (can be phased)

Adopt Monthly Billing – Begin issuing monthly bills (possible even before/without AMI)

Potential demand reductions: AMI metering and monthly billing are best practices; they are necessary building blocks for improved water loss auditing, customer-side leak detection, and improved inclining block rates

49

50

Increasing consumer benefits & engagement in AMI-based conservation programs Guidebook for practitioners

Benefits of AMI

Multiple Benefits

- Improves revenue forecasting
- · Reduces bill adjustments
- Improves rate design
- Enables other smart monitoring (e.g. pressure monitoring, leak detection)
- Improves theft detection
- Supports customer service
- Reduces meter reading costs

www.awwa.org/Portals/0/AWWA/ETS/Resources/Technical% 20Reports/ami_guidebook_feb_2022.pdf

Metering and billing - Implementation

Learn More by Joining AWE's Conservation and AMI Users Group (CAMI)*

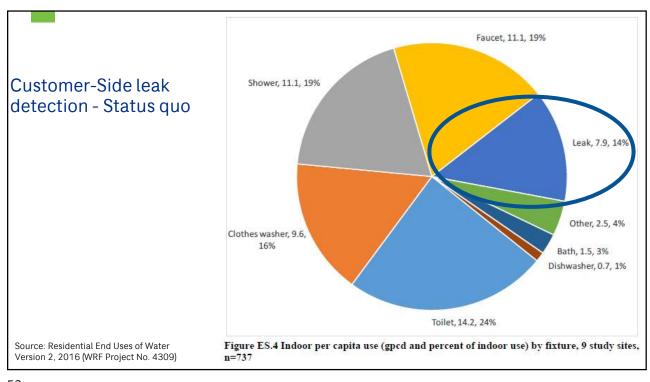
*CAMI is currently free and open to all

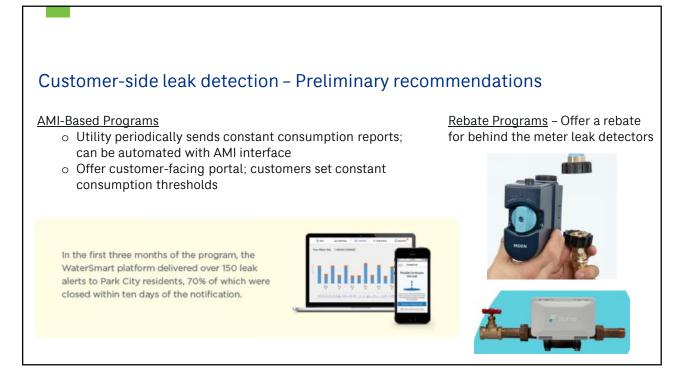
TEMPLATE FOR AN

ADVANCED METERING INFRASTRUCTURE SYSTEM

REQUEST FOR PROPOSALS

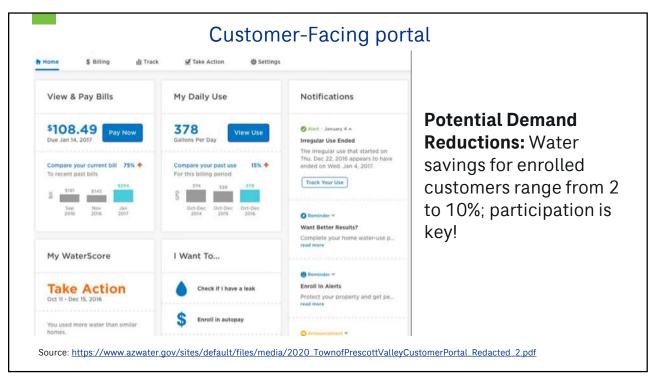
Note - AWE member only resource

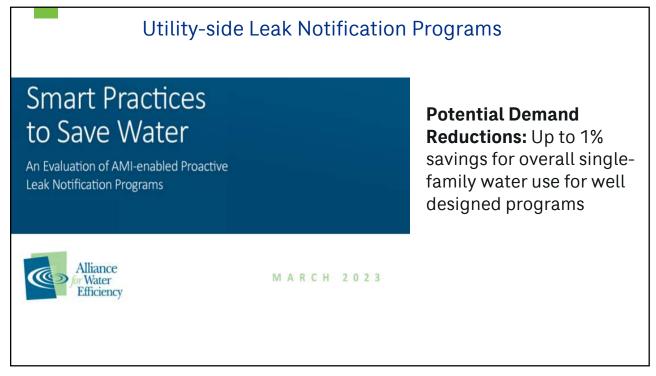

51


Preliminary Recommendation #3:

implement customer-side leak detection programs

52

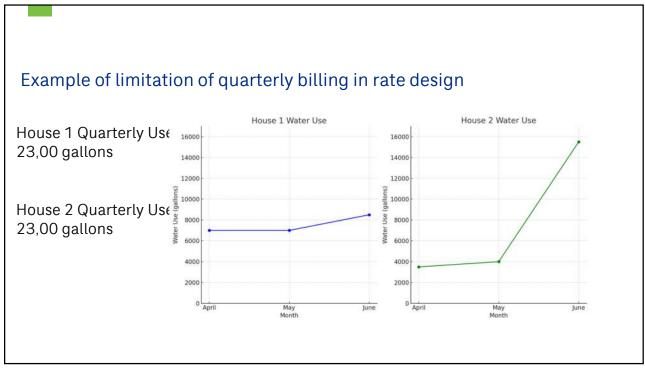




54

56

Preliminary Recommendation #4: Improve increasing block rate design


57

Water Rate Per Thousand Gallons

Current Rates Effective January 1, 2024

		2023 2024		
	Quarterly	Per Thousand Per		
		Gallons	Gallons	
1st Step	0 -20,000 gals	\$5.03	\$5.44	
2nd Step	20,001-50,000 gals	\$6.12	\$6.61	
3rd Step	Over 50,000 gals	\$7.65	\$8.26	

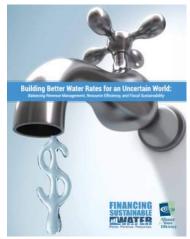
Good Example of increasing block rate structure

Proposed Water Blocks	Approx. % of Bills in New Blocks	Water Usage Examples (CF)	Current Monthly Bill	Proposed Monthly Bill	Impact (\$)
Basic Needs 0-600	55%	588	\$33.97	\$33.40	-\$0.57
Larger Family 600-1,200	25%	1200	\$60.22	\$60.88	\$0.66
Efficient Irrigation 1,200-2,600	15%	1600	\$79.58	\$85.04	\$5.46
Enhanced Irrigation >2,600	5%	3208	\$160.74	\$191.28	\$30.55

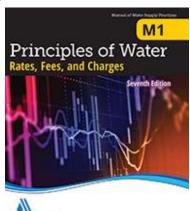
Source: https://www.olatheks.gov/Home/Components/News/News/3362/57

60

Improve increasing block rate structures – Preliminary recommendations


Size blocks based on basic indoor use, efficient outdoor use, and excessive outdoor use

Ensure the costs of serving peak customers are allocated to peak customers, which better reflects cost of service, promotes conservation, and improves relative affordability for customers with only basic indoor use


Potential demand reductions: Demand reductions will vary. Poorly designed structures will not reduce demands and well-designed structures **can reduce demands by 10% or more and be revenue neutral**. Revenue and demand impacts of a given rate structure can be estimated as part of a rate study that accounts for price elasticity and strength of the conservation signal.

61

Rate Designs - implementation

Free resource available at www.allianceforwaterefficiency.org /resources/financing-sustainable-

Available at AWWA bookstore

62

Preliminary recommendations for long-term demand reductions

- 1. Conduct, Validate, and Act on Annual American Water Works Association (AWWA) Water Loss Audits
- 2. Adopt Advanced Metering Infrastructure and Monthly Billing
- 3. Implement Customer-Side Leak Detection Programs
- 4. Improve Increasing Block Rate Designs

63

Alliance *for* Water Efficiency Thank You!

64

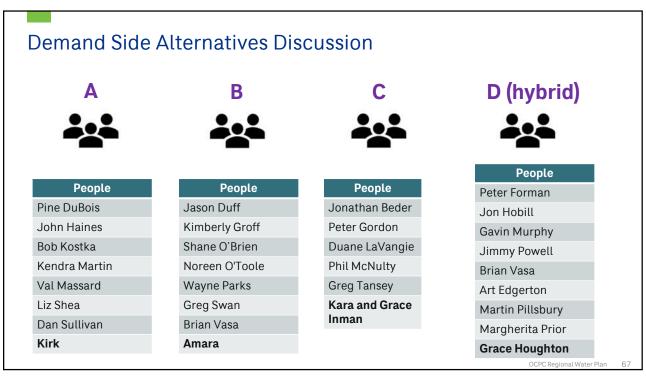
Alternatives Introduction

65

Hypothetical Alternatives ("Projects/Policies") for OCPC

Supply Side

- MWRA for all communities
- MWRA for communities abutting Stoughton and Weymouth
- MWRA for communities abutting Weymouth
- More MWRA for Stoughton
- Desalination at max capacity to supply X communities
- Desalination at 80% capacity to retain buffer
- Centralized PFAS treatment facilities
- Decentralized PFAS treatment programs
- Interconnections: A, B, C, D, E, F,etc.
- Brackish groundwater
- Stormwater capture
- Reclaimed water for non-potable uses
- Additional operational staff


Demand Side

- Conduct, Validate, and Act on Annual AWWA Water Loss Audits
- Adopt AMI and Monthly Billing
- Implement Customer-Side Leak Program
- Improve Tiered Rate Designs

66

66

Discussion Questions

- 1. What are your reactions to these preliminary recommendations?
- 2. Are there demand side management strategies your community already has in place?
- 3. Are there recommendations that you think your community is more likely to implement?
- 4. Are there any demand side management that you don't think seem feasible for your community?
- 5. Are there other demand side management strategies you would like to hear more about?
- 6. Do you have any additional questions about the recommendations for demand side management presented today?

68

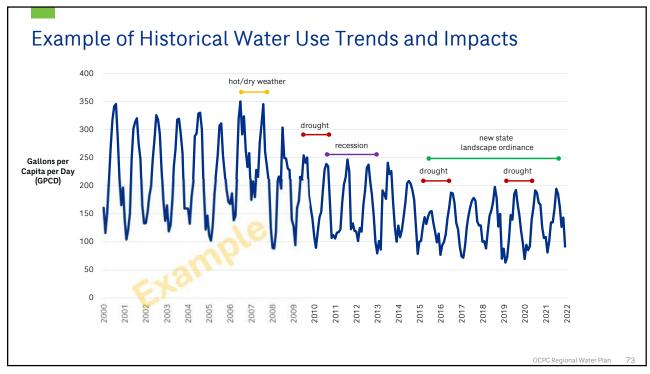
Demand Projections Introduction

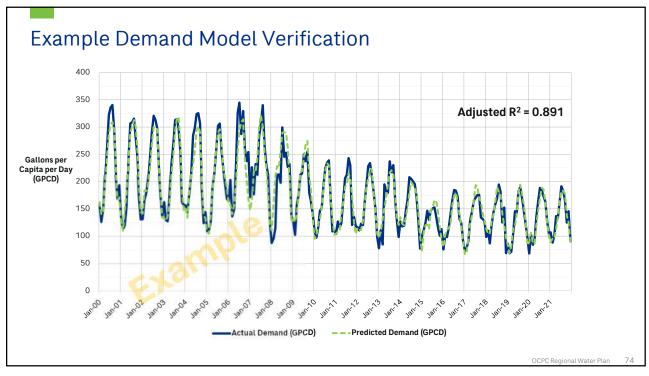
- Different methodologies exist with varying cost and complexity
- Methods fall along a spectrum rather than being a strict or exact approach
- Selecting which method depends on purpose of forecast (e.g., policy vs master planning), data availability and quality, cost and time constraints, and importance of geospatial accuracy

OCPC Regional Water Plan

70

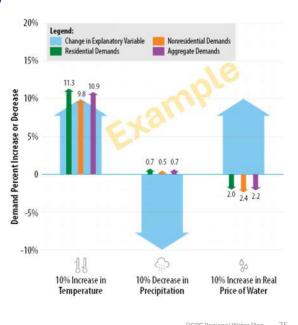
Demand Projections Methodology


- Econometric Function
 - Form of regression analysis that incorporates economic variable(s)
 - Assumes per unit water use (dependent variable) is a function of several explanatory factors (independent variables)
 - Unit use rate changes over time as those explanatory factors change
- Variables included in function are based on iterative process to determine combination with highest correlation with historical water use
- Adjusted R² to measure correlation adjusts for number of terms in model, only increases if new variable improves model

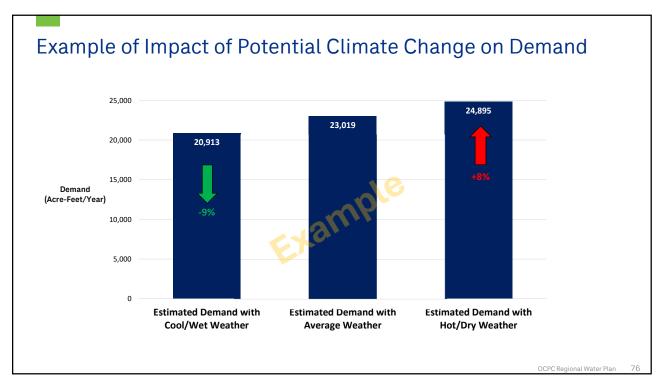

71

Overview of Econometric Demand Projection Process Historical Data Create Historical Perform Statistical Collection and Database with Analysis of **Processing** Monthly Values Historical Demand **Apply Projections Determine Best** Calculate for Explanatory Mathematical Projected Demand Variables **Function**

72



74



Demand Projections Methodology

- Percent change in independent variable(s) has a measurable percent change in the dependent variable.
- Relationship to Demand
 - Direct (e.g., temperature)
 - Inverse (e.g., precipitation)
- Available research, sound reasoning, and justifiable assumptions should support causal relationships of independent variables to dependent variable

75

76

Future Scenario Planning

- Projected demands are based on projections for the independent variables
- Typically, a "baseline" demand is calculated based on:
 - population forecast from state or regional demographic agency ("expected" growth)
 - historical long-term average climate
 - historical average UAW
 - average water use efficiency

77

Future Scenario Planning

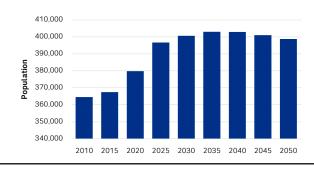
 Different scenarios can be incorporated into the planning process that evaluate the impact on water demand under a variety of future conditions:

> Population Reduction in Climate change growth differs **UAW** from expected Increased **Economic** conservation downturn

78

Example of Future Scenario Planning

	Planning Scenario	Population Growth	Future Climate Change	Median Household Income Water Use Efficiency		Trend in UAW	Private Wells to Public Supply
1.	Raseline Expected		Historical Average	Modest Increase	Average increase in efficiency	Historical Average	None
2.	Lower Stress Lower t		Cool/Wet	No Increase	Greater than average increase	Decrease	None
3.	Moderate Stress	Greater than expected	Warm/Dry	Modest Increase	Average increase in efficiency	Historical Average	25%
4.	Significant Stress	Much greater than expected	Hot/Dry	Significant Less than Increase average incre		Increase	75%
5.	Significant Stress with Mitigation Much greater than expected Hot/Dry		Significant Increase	Greater than average increase	Decrease	75%	

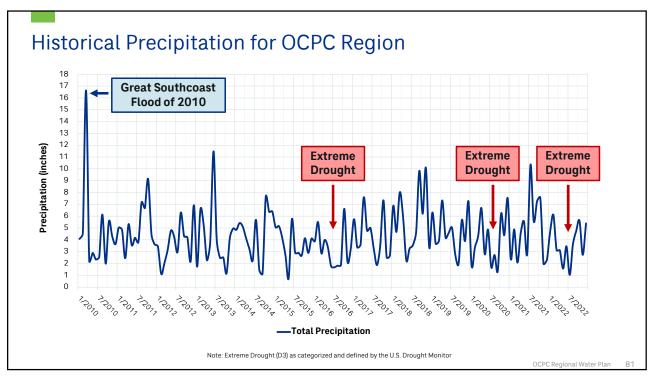

OCPC Regional Water Plan

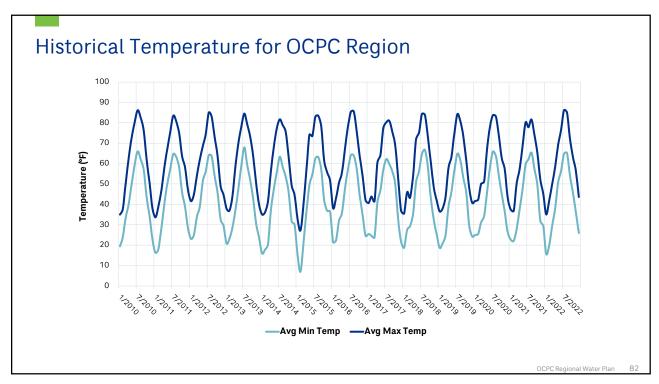
70

79

Historical and Projected Population

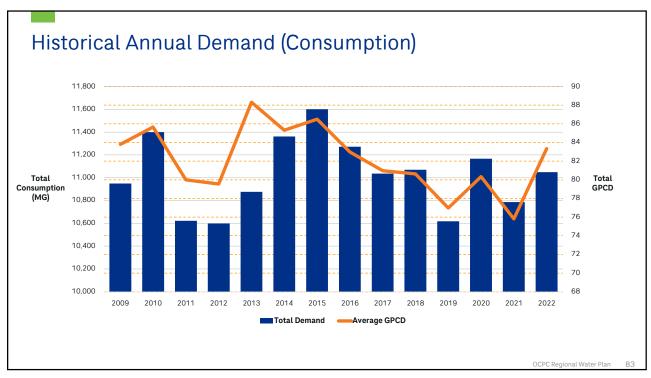
- Historical population
 - combination of data provided by communities for population served and American Community Survey (ACS) data
- Projected population
 - from UMass Donahue Institute
 - same population numbers used by state for permits

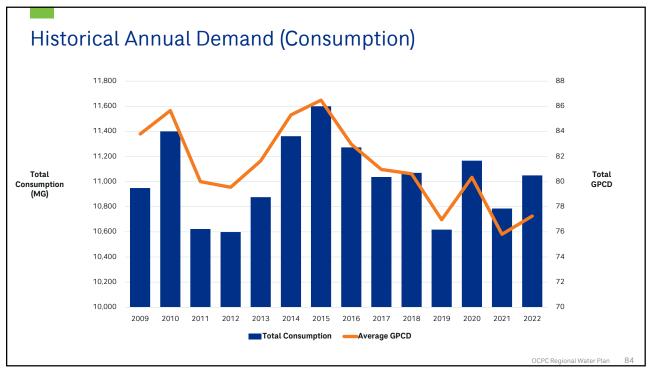

2020 to 2040: +6.1%


Year	OCPC Member Community Population Projection
2010	364,607
2015	367,470
2020	379,781
2025	396,647
2030	400,662
2035	402,960
2040	402,915
2045	401,028
2050	398,695

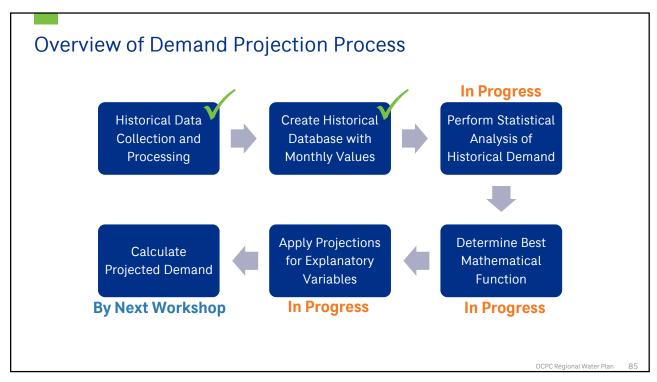
OCPC Regional Water Plan

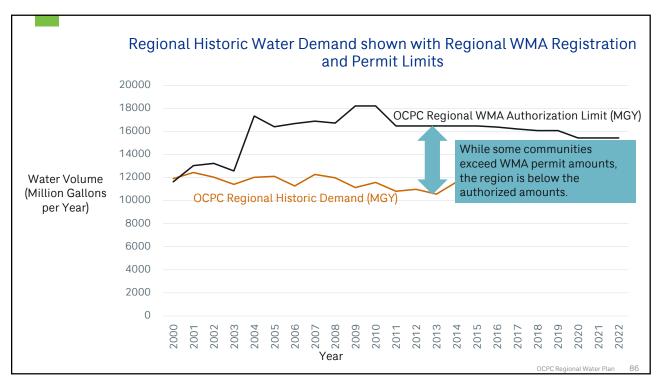
80





82





84

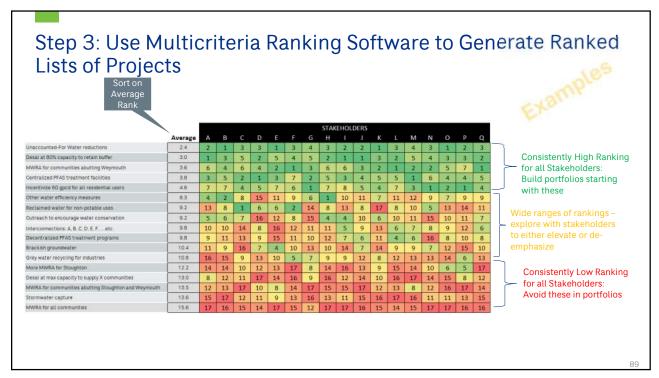
86

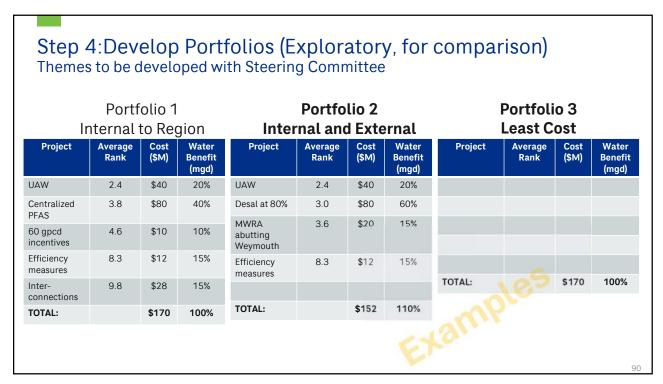
Objectives		/Resilience ctive	Meet DW Regulations	Ecosystem Health	High B:C Ratio	Promot	e Equity	Innovative/ Alternative Solutions		e Economic ential
Alternatives							_			
MWRA for all communities	100%	10%	2	5	20M	0.1	3 AF	RO N	1	5
MWRA for communities abutting Stoughton and Weymouth	70%	4%	2	3	12M	0.4	2	N	1	3
MWRA for communities abutting Weymouth										
More MWRA for Stoughton										
Desal at max capacity to supply X communities										
Desal at 80% capacity to retain buffer										
Centralized PFAS treatment facilities	75%	15%	3	3	18M	0.6	1	N	1	2
Decentralized PFAS treatment programs										
Interconnections: A, B, C, D, E, F,etc.										
Brackish groundwater										
Stormwater capture	5%	0%	1	3	4M	0.8	1	Υ	1	1
Reclaimed water for non-potable uses										
Unaccounted-For Water reductions	80%	15%	2	4	6M	0.4	1	N	5	4
Incentivize 60 gpcd for all residential users										
Outreach to encourage water conservation										
Other water efficiency measures										

Step 2: Collect Stakeholder Weights (Can be done for objectives or metrics – Here, objective weights can be distributed equally among multiple metrics, if applicable)

	Reliability	Safe DW	Ecosystem	High B:C	Equity	Innovation	Sustainable Economy
Stakeholder A	50	10	10	5	15	5	5
Stakeholder B	25	10	25	10	10	10	10
Stakeholder C	5	5	5	60	10	5	10
Stakeholder D	20	5	5	5	10	15	40
Stakeholder E	0	0	100	0	0	0	0
Stakeholder F	14.3	14.3	14.3	14.3	14.3	14.3	14.3
Stakeholder G							
Stakeholder H							
Stakeholder I							
Stakeholder J							
Stakeholder K							
Stakeholder L							
Stakeholder M							
Stakeholder N							
Stakeholder O							
Stakeholder P							
Stakeholder Q							

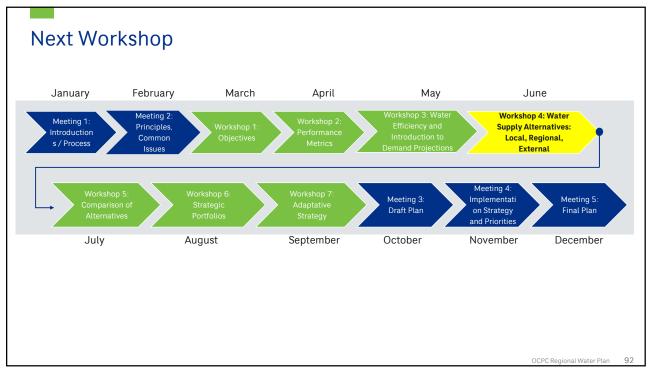
88


Slide 87

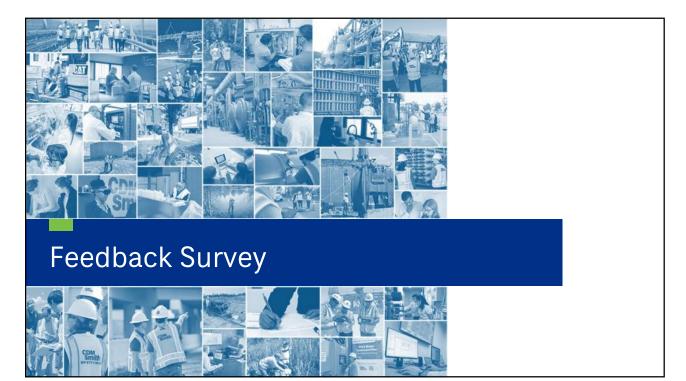

AR0 Update metrics so they match what our are Regehr, Amara J., 2024-05-10T19:01:47.889

Slide 88

Update the se to match the objectives Regehr, Amara J., 2024-05-10T19:02:19.194 AR0



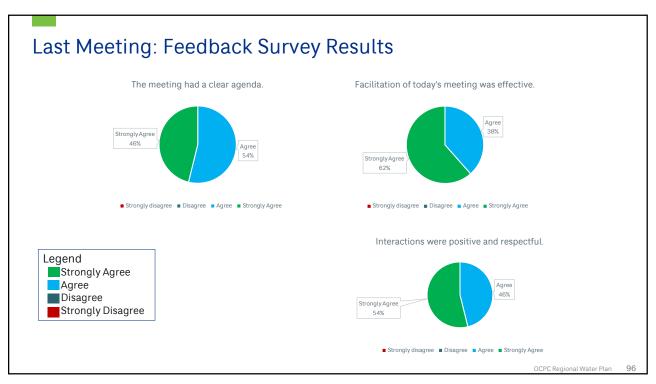
90


92

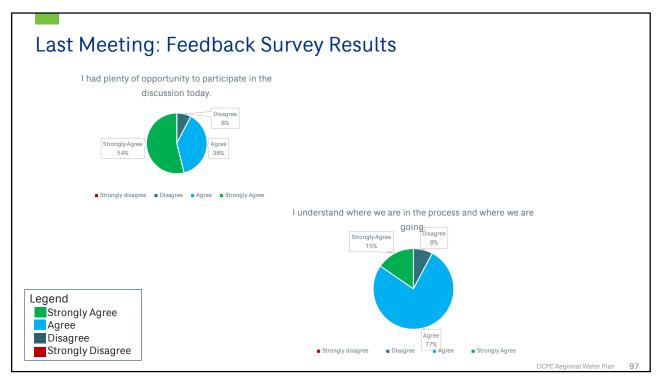
Upcoming Schedule

WHEN	DETAILS
Tuesday, June 25 th 9:00 am – 12:00 pm	Workshop 4
Wednesday July 31st 9:00 am – 12:00 pm	Workshop 5
Tuesday, August 27 th 9:00 am – 12:00 pm	Workshop 6
Tuesday, September 24 th 9:00 am – 12:00 pm	Workshop 7
Tuesday, October 29 th 9:00 am – 12:00 pm	Meeting 3
Monday, November 18 th 8:00 am – 12:00 pm	Meeting 4
Tuesday, December 10 th 8:00 am – 12:00 pm	Meeting 5

93



94


Last Meeting: Feedback Survey Results 1. Please tick one box per row. The meeting had a clear agenda. Facilitation of today's meeting was effective. I had plenty of opportunity to participate in the discussion today. Interactions were positive and respectful. I understand where we are in the process and where we are going. Strongly disagree Disagree Agree Strongly agree

95

96

